Растворы электролитов. Активность, ионная сила, изотонический коэффициент

Использование активности вместо концентрации ионов позволяет формально учесть всю совокупность взаимодействий (без учета их физической природы), возникающих в растворах электролитов. Этот способ описания взаимодействий применительно к растворам электролитов имеет ряд особенностей.

Химический потенциал растворяемой соли (m S) равен:

где a S - активность соли; m S 0 - стандартное значение химического потенциала, отвечающее a S =1.

Если электролит диссоциирует на n + катионов и n - анионов, то, исходя из условия электронейтральности, химический потенциал соли связан с химическими потенциалами катионов и анионов соотношением:

m S = n + m + + n - m -- ; m S 0 = n + m + 0 + n - m -- 0 ; (1.7)

Химический потенциал иона связан с активностью иона соотношением:

где m i - химический потенциал катиона или аниона.

Из уравнений (1.5-1.7) следует, что:

= n + + n - , (1.9)

В связи с тем, что в растворах электролитов одновременно присутствуют и катионы, и анионы растворенного вещества (получить раствор, содержащий только катионы или анионы, невозможно), оценить активность и коэффициент активности отдельного иона невозможно. Поэтому для растворов электролитов вводятся понятия средней ионной активности и среднего ионного коэффициента активности.

Для электролита, который диссоциирует на n + катионов и n - анионов средняя ионная активность электролита a ± равна среднему геометрическому из произведения активностей катиона и аниона:

где a + и a - – активность катионов и анионов соответственно; n = n + + n - - общее число ионов, образующихся при диссоциации молекулы электролита.

Например, для раствора Cu(NO 3) 2:

Аналогично рассчитывается средний коэффициент активности электролита g ± и среднее число ионов электролита в растворе n ±:

где + и - - коэффициенты активности катиона и аниона; n ± - среднее число катионов и анионов в растворе.

Например, для электролита KCI=K + + CI - среднее число ионов в растворе равно n ± = (1 1 ·1 1) 1 = 1, то есть в растворе KCI один катион и один анион. Для электролита Al 2 (SO 4) 3 = 2Al 3+ + 3SO 4 2- среднее число ионов в растворе равно n ± = (2 2 ·3 3) 1/5 =2,56. Это означает, что в расчетах средней активности будет фигурировать одинаковое среднее число катионов и анионов (2,56), отличное от действительного (катионов 2, анионов 3).

Обычно среднюю ионную активность и средний ионный коэффициент активности определяют экспериментально (по термодинамическим свойствам растворов):

По повышению температуры кипения раствора;

По понижению температуры замерзания раствора;

По давлению пара растворителя над раствором;


По растворимости малорастворимых соединений,

По методу ЭДС гальванических элементов и др.

Среднюю ионную активность и средний ионный коэффициент активности электролита для разбавленных растворов сильных электролитов можно определить теоретически по методу Дебая-Хюккеля.

Средняя ионная активность и средний ионный коэффициент активности зависят не только от концентрации раствора, но и от заряда иона. В области низких концентраций средний ионный коэффициент активности определяется зарядом образующих ионов и не зависит от других свойств электролитов. Например, в области низких концентраций g ± для растворов KСl, NaNO 3 , HСl и др. одинаковы.

В разбавленных растворах сильных электролитов средний коэффициент активности g ± зависит от общей концентрации всех присутствующих в растворе электролитов и зарядов ионов, т.е. g ± зависит от ионной силы раствора I. Ионная сила раствора рассчитывается по формуле:

где m i –моляльная (или молярная) концентрация i- того иона; z i - заряд иона. При расчёте ионной силы раствора необходимо учитывать все ионы, находящиеся в растворе.

Существует правило ионной силы раствора : в разбавленных растворах коэффициент активности сильного электролита одинаков для всех растворов с одной и той же ионной силой независимо от природы электролита. Это правило справедливо при концентрациях не более 0,02 моль/дм 3 . В растворах средних и высоких концентраций правило ионной силы трансформируется, так как усложняется характер межионного взаимодействия и проявляются индивидуальные свойства электролитов.

Должны быть заменены активностями.

Например, если для иона как и для компонента в растворе справедливо выражение:

где с i - концентрация i -го иона в идеальном растворе, то для реального раствора будем иметь:

где a i = c i ·f i — активность i-го иона в растворе,

f i - коэффициент активности.

Тогда энергия взаимодействия иона с окружающими его ионами в расчете на 1 моль ионов равна

f i →1 при с→0

Таким образом, величина коэффициента активности, главным образом зависящая от силы электростатического взаимодействия ионов, а также ряда других эффектов, характеризует степень отклонения свойств реальных растворов электролитов от идеальных растворов. По смыслу f i это работа по переносу иона из идеального раствора в реальный.

Различают активность электролита и активность ионов. Для любого электролита процесс диссоциации можно записать следующим образом:

где n + и n - — количество ионов А с зарядом z + и ионов B c зарядом z -, на которые распадается исходная частица.

Для раствора электролита в целом можно записать:

m соли = m 0 соли + RT·ln a соли, (9)

С другой стороны химический потенциал электролита складывается из химических потенциалов ионов, так как электролит распадается на ионы:

m соли = n + m + + n - m - , (10)

m + и m - относятся к одному молю ионов, m соли - к одному моль электролита. Подставим выражение (10) в (9):

n + m + + n - m - = m 0 соли + RT ln a соли (11)

Для каждого типа ионов можем записать уравнение типа (9):

m + = m 0 + + RT·ln a +

m - = m 0 - + RT·ln a - (12)

Подставим уравнение (12) в левую часть уравнения (11) и поменяем местами правую и левую части.

m 0 с + RT·ln a с = n + m 0 + + n + RT·ln a + + n - m 0 - + n - RT·ln a - (13)

Объединим все слагаемые с m 0 в левой части:

(m 0 с - n + m 0 + - n - m 0 -) = n + RT·ln a + + n - RT·ln a - - RT·ln a соли (14)

Если учесть, что по аналогии с формулой (10)

m 0 С = n + m 0 + + n - m 0 - (15)

то m 0 С - n + m 0 + - n - m 0 - = 0 (16)

Уравнение (15) аналогично уравнению (10), но оно относится к стандартному состоянию, когда (а С = а + = а - = 1).

В уравнении (14) правая часть равна нулю, и оно перепишется следующим образом:

RT·ln a с = n + RT·ln a + + n - RT·ln a -

ln a с = ln a + n + + ln a + n -

Это связь активности электролита в растворе с активностями ионов

где а С — активность электролита, а + и а - — активности положительных и отрицательных ионов.


Например, для бинарных электролитов АВ справедливо:

Следовательно

Нельзя принципиально найти экспериментально активности отдельных ионов, т.к. нужно было бы иметь дело с раствором из одного вида ионов. Это невозможно. Поэтому было введено понятие средней ионной активности (), представляющей собой среднее геометрическое из активности отдельных ионов:

или подставив выражение (17) имеем:

Криоскопический метод и метод, основанный на определении давления пара, позволяют определить активность электролита в целом (а С) и по уравнению (19) найти среднюю ионную активность.

Во всех случаях, когда возникает необходимость подстановки величины а + или а - в какое-то уравнение, эти величины заменяют средней активностью данного электролита а ± , например,

а ± » а + » а -

Как известно, активность связана с концентрацией соотношением a = f?m. Средний ионный коэффициент активности () определяется выражением, аналогичным выражению для средней ионной активности

Существуют табличные значения для различных способов выражения концентраций (моляльность, молярность, мольные доли). Для них имеет численно разные значения. Экспериментально значения определяют криоскопическим методом, методом измерения давления пара, методом измерения ЭДС гальванических элементов и др.

Аналогично средний ионный стехиометрический коэффициент n ± определяется из выражения:

Средняя ионная моляльность () определяется как:

Тогда:

б) Концентрации ионов, образующихся при полной диссоциации Na 2 CO 3 , равны:

Так как n + = 2, n - = 1, то .

Методом ЭДС можно определить средние ионные коэффициенты активности.

Способ 1− расчетный . Для этой цели используются элементы без переноса. Пусть необходимо определить в водном растворе HBr с концентрацией . Составляем гальванический элемент без переноса, схема которого

Pt (H 2) | HBr | AgBr тв, Ag| Pt

Известно, что , В.

Уравнения электродных реакций:

H 2 - 2e + 2H 2 O = 2 H 3 O +

AgBr + e = Ag + Br -

Итоговая реакция: H 2 + 2H 2 O + 2AgBr = 2H 3 O + + 2Ag + 2 Br -

Запишем уравнение Нернста для данной суммарной реакции, протекающей в гальваническом элементе:

При давлении 1 атм это выражение упрощается:

Реакция HBr + H 2 O = H 3 O + + Br - идет практически до конца, т.е. , а .

Следовательно,

Отсюда логарифм среднего ионного коэффициента активности равен

По формуле (42) нетрудно вычислить значение среднего ионного коэффициента активности, располагая данными о начальной концентрации кислоты и о значениях стандартных условных электродных потенциалов. Следует отметить, что эти значения (стандартных электродных потенциалов) приводятся в справочниках при температуре растворов 298 К.

Способ 2 –графический. Если необходимо вычислить коэффициенты активности при другой, отличной от 298 К температуре, поступают следующим образом. Составляют гальванический элемент без переноса, например такой

Проводят серию опытов, в которых измеряют ЭДС такого гальванического элемента, но концентрация электролита в каждом опыте разная. Эта концентрация задается исследователем, т.е. она известна. Например, электродвижущая сила (Е, В) указанного гальванического элемента была измерена при температуре 313 К в серии опытов с различными значениями концентрации соляной кислоты , моль/л.

Как найти по этим данным величину среднего ионного коэффициента активности в растворе соляной кислоты какой-либо концентрации, например, 0,023 моль/л.

При температуре 313 К в справочниках нет данных о значениях стандартных электродных потенциалов, поэтому величину стандартной ЭДС необходимо находить графически.

Уравнение Нернста для итоговой реакции, протекающей в данном гальваническом элементе будет иметь вид (14):

Запишем уравнение в виде, удобном для дальнейших расчетов:

Слева в уравнении (43) находятся заданные по условию эксперимента () и измеренные в эксперименте величины (E ) . То, что расположено справа в уравнении, содержит две неизвестные величины − стандартную ЭДС (E о ) и средний ионный коэффициент активности в растворе хлорида водорода, который и нужно определить ().

Существует способ, который позволяет в определенных условиях сделать в правой части уравнения не две неизвестные величины, а одну. Если рассмотреть такое состояние, при котором средний ионный коэффициент активности в растворе электролита можно принять равным единице, то логарифм его будет равен нулю и тогда в правой части уравнения будет только одна неизвестная − стандартная ЭДС гальванического элемента при температуре исследования.



Известно, что средние ионные коэффициенты активности стремятся к единице в сильноразбавленных растворах, когда концентрация равна 0. Как это следует из предельного закона теории Дебая-Хюккеля, логарифм среднего ионного коэффициента активности пропорционален корню квадратному из величины ионной силы раствора (или корню квадратному концентрации электролита). Именно поэтому при графическом методе нахождения стандартной ЭДС гальванического элемента строят зависимость левой части уравнения (30) от корня квадратного из концентрации раствора электролита (рис.12).

Нанеся экспериментальные значения при разных значениях на график, получают зависимость, которую затем экстраполируют на нулевое значение . Так находят стандартную ЭДС гальванического элемента при температуре, отличной от 298 К.

Затем возвращаются к уравнению (43). Вычисляют (т.е. корень квадратный из концентрации, при которой нужно найти средний ионный коэффициент активности − точка а на рис.12). По графику (рис.12) определяют значение (точка b на рис.12). Зная , по уравнению (43) нетрудно рассчитать и требуемую величину среднего ионного коэффициента активности.

Для сравнения определенных экспериментально средних ионных коэффициентов активности с рассчитанными по теории Дебая-Хюккеля воспользуемся формулами предельного закона теории и второго приближения этой теории.



В случае предельного закона теории Дебая-Хюккеля

где - заряды катиона и аниона;

Ионная сила раствора;

Константа зависящая от диэлектрической проницаемости растворителя и температуры.

Для водных растворов при разных температурах величина константы h равна:

Температура, К 298 303 313 323 Константа h , (л/моль) 0,5 0,512 0,517 0,528 0,539

Уравнение (45) справедливо до ионной силы 0,01 моль/л.

Второе приближение теории Дебая-Хюккеля выражается следующим уравнением

где - расстояние наибольшего сближения электрических центров ионов;

В – эмпирический параметр, зависящий от температуры.

Для водного раствора при 298 К В = 3,29×10 9 м -1 ×моль -0,5 кг 0,5 .

Если принять расстояние наибольшего сближения равным = 0,304 нм, то можно вычислить средние коэффициенты активности по уравнению Гюнтельберга:

Уравнение (46) справедливо до ионной силы 0,1 моль/л.

ВАРИАНТЫ ЗАДАНИЙ НА КУРСОВУЮ РАБОТУ

В зависимости от подготовленности студентов и по усмотрению преподавателя полное задание на курсовую работу может включать в себя сочетание от двух до трех перечисленных далее вариантов фрагментов заданий.

Вариант А. Изложить теоретический материал по теме курсовой работы. Составить из предлагаемых электродов правильно разомкнутый гальванический элемент без переноса, записать электродные и итоговую реакции. Записать уравнение Нернста для ЭДС такого гальванического элемента.

Вариант В. Изложить теоретический материал и исследовать температурную зависимость ЭДС гальванического элемента. Рассчитать по данным ЭДС термодинамические характеристики реакции, протекающей в гальваническом элементе и сравнить их со справочными данными.

Вариант С. Изложить теоретический материал и на основании экспериментальных данных определить методом ЭДС средние ионные коэффициенты активности электролита исследуемого гальванического элемента и сравнить их с рассчитанными по теории Дебая-Хюккеля.

Вариант D. Изложить теоретический материал и определить величину константы ионизации слабой кислоты или слабого основания самостоятельно (или на основании приведенных в задании экспериментальных данных потенциометрического титрования). Сравнить полученные данные со справочными.

Вариант E. Изложить теоретический материал и определить самостоятельно (или на основании приведенных в задании экспериментальных данных) методом измерения ЭДС и рН-метрически величину константы ионизации слабой кислоты или слабого основания. Сравнить полученные данные со справочными.

Электролиты – это химические соединения, которые в растворе полностью или частично диссоциируют на ионы. Различают сильные и слабые электролиты. Сильные электролиты диссоциируют на ионы в растворе практически полностью. Примерами сильных электролитов могут служить некоторые неорганические основания (NaOH) и кислоты (HCl, HNO 3) , а также большинство неорганических и органических солей. Слабые электролиты диссоциируют в растворе только частично. Доля продиссоциировавших молекул от числа первоначально взятых называется степенью диссоциации. К слабым электролитам в водных растворах относятся почти все органические кислоты и основания (например CH 3 COOH , пиридин) и некоторые органические соединения. В настоящее время в связи с развитием исследований неводных растворов доказано (Измайлов и др.), что сильные и слабые электролиты являются двумя состояниями химических элементов (электролитов) в зависимости от природы растворителя. В одном растворителе данный электролит может быть сильным электролитом, в другом – слабым.

В растворах электролитов наблюдается, как правило, более значительные отклонения от идеальности, чем в растворе неэлектролитов той же концентрации. Объясняется это электростатическим взаимодействием между ионами: притяжением ионов с зарядами разных знаков и отталкиванием ионов с зарядами одного знака. В растворах слабых электролитов силы электростатического взаимодействия между ионами меньше по сравнению с растворами сильных электролитов той же концентрации. Это объясняется частичной диссоциацией слабых электролитов. В растворах сильных электролитов (даже в разбавленных растворах) электростатическое взаимодействие между ионами велико и их нужно рассматривать как идеальные растворы и использовать метод активности.

Рассмотрим сильный электролит M X+ , A X- ; он полностью диссоциирует на ионы

M X+ A X- = v + M X+ + v - A X- ; v = v + + v -

В связи с требованием электронейтральности раствора химический потенциал рассматриваемого электролита (в целом) μ 2 связан с химическими потенциалами ионов μ - μ + соотношением

μ 2 = v + μ + + v - μ -

Химические потенциалы составляющих электролита связаны с их активностями следующими уравнениями (в соответствии с выражением II. 107).

(VII.3)

Подставляя эти уравнения в (VI.2), получаем

Выберем стандартное состояние μ 2 0 таким образом, чтобы между стандартными химическими потенциалами μ 2 0 ; μ + 2 ; μ - 0 было справедливо соотношение по форме аналогичное уравнению VII.2

(VII.5)

С учетом уравнения VII.5 соотношение VII.4 после сокращения одинаковых слагаемых и одинаковых множителей (RT) приводится к виду

Или (VII.6)

В связи с тем, что активности отдельных ионов не определяются из опыта введем понятие средняя активность ионов электролита как среднее геометрическое из активностей катиона и аниона электролита:

; (VII.7)

Среднюю активность ионов электролита можно определить из опыта. Из уравнений VII.6 и VII.7 получаем.

Активности катионов и анионов можно выразить соотношениями

a + = y + m + , a - = y - m - (VII.9)

где y + и y - - коэффициенты активности катиона и аниона; m + и m - - моляльность катиона и аниона в растворе электролита:

m + = m v + и m - = m v - (VII.10)

Подставляя значения a + и a - из VII.9 и VII.7 получаем

(VII.11)

где y ± - средний коэффициент активности электролита

(VII.12)

m ± - средняя моляльность ионов электролита

(VII.13)

Средний коэффициент активности электролита y ± представляет собой среднее геометрическое из коэффициентов активности катиона и аниона, а средняя концентрация ионов электролита m ± - среднее геометрическое из концентраций катиона и аниона. Подставляя значения m + и m - из уравнения (VII.10) получаем

m ± = m v ± (VII.14)

где (VII.15)

Для бинарного одно-одновалентного электролита МА (например NaCl ), y + = y - = 1 , v ± = (1 1 ⋅ 1 1) = 1 и m ± = m ; средняя моляльность ионов электролита равна его моляльности. Для бинарного дву-двухвалентного электролита МА (например MgSO 4 ) также получим v ± = 1 и m ± = m . Для электролита типа M 2 A 3 (например Al 2 (SO 4) 3 ) и m ± = 2,55 m . Таким образом, средняя моляльность ионов электролита m ± не равна моляльности электролита m .

Для определения активности компонентов нужно знать стандартное состояние раствора. В качестве стандартного состояния для растворителя в растворе электролита выбирают чистый растворитель (1-стандартное состояние):

x 1 ; a 1 ; y 1 (VII.16)

За стандартное состояние для сильного электролита в растворе выбирают гипотетический раствор со средней концентрацией ионов электролита, равной единице, и со свойствами предельно разбавленного раствора (2-е стандартное состояние):

Средняя активность ионов электролита a ± и средний коэффициент активности электролита y ± зависят от способа выражения концентрации электролита (x ± , m, c ):

(VII.18)

где x ± = v ± x; m ± = v ± m; c ± = v ± c (VII.19)

Для раствора сильного электролита

(VII.20)

где M 1 - молекулярная масса растворителя; M 2 - молекулярная масса электролита; ρ - плотность раствора; ρ 1 - плотность растворителя.

В растворах электролитов коэффициент активности y ±x называют рациональным, а коэффициенты активности y ±m и y ±c - практически средними коэффициентами активности электролита и обозначают

y ±m ≡ y ± и y ±c ≡ f ±

На рисунке VII.1 приведена зависимость средних коэффициентов активности от концентрации для водных растворов некоторых сильных электролитов. При моляльности электролита 0,0 до 0,2 моль/кг средний коэффициент активности y ± уменьшается, причем тем сильнее, чем выше заряд ионов, образующих электролит. При изменении концентраций растворов от 0,5 до 1,0 моль/кг и выше средний коэффициент активности достигает минимального значения, возрастает и становится равным и даже большим единицы.

Средний коэффициент активности разбавленного электролита можно оценить при помощи правила ионной силы. Ионная сила I растворасильного электролита или смеси сильных электролитов определяется уравнением:

Или (VII.22)

В частности, для одно-одновалентного электролита, ионная сила равна концентрации (I = m ); для одно-двухвалентного или двух-одновалентного электролита (I = 3 m ); для бинарного электролита с зарядом ионов z I = m z 2 .

Согласно правилу ионной силы в разбавленных растворах средний коэффициент активности электролита зависит только от ионной силы раствора. Это правило справедливо при концентрации раствора менее 0,01 - 0,02 моль/кг, но приближенно им можно пользоваться до концентрации 0,1 - 0,2 моль/кг.

Средний коэффициент активности сильного электролита.

Между активностью a 2 сильного электролита в растворе (если формально не учитывать его диссоциацию на ионы) и средней активностью ионов электролита y ± в соответствии с уравнениями (VII.8), (VII.11) и (VII.14) получаем соотношение

(VII.23)

Рассмотрим несколько способов определения среднего коэффициента активности электролита y ± по равновесным свойствам раствора электролитов.

ЭЛЕКТРОЛИТОВ ДЕБАЯ-ГЮККЕЛЯ.

Одной из теорий, количественно учитывающих ион-ионные взаимодействия, явилась теория Дебая-Гюккеля, достаточно хорошо объясняющая свойства разбавленных растворов сильных электролитов. Степень диссоциации для сильных электролитов равна единице. Поэтому зависимость электропроводности, осмотического давления и других свойств расворов от концентрации определяется главным образом действием межионных сил и сольватационными эффектами. Под сольватацией понимают совокупность энергетических и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с молекулами растворителя.

В основе теории Дебая-Гюккеля лежат следующие положения: электростатическое взаимодействие противоположно заряженных ионов приводит к тому, что вокруг положительных ионов вероятность нахождения отрицательных ионов будет больше, чем положительных. Таким образом, вокруг каждого иона как бы существует ионная атмосфера из противоположно заряженных ионов. (Сфера, в которой преобладает заряд, противоположный по знаку центральному иону, и называется ионной атмосферой ). Ионная атмосфера вокруг иона содержит и положительные, и отрицательные ионы, однако в среднем вокруг каждого положительного иона имеется избыток отрицательных ионов, а вокруг отрицательного иона – избыток положительных ионов. Раствор в целом остается электронейтральным.

Химический потенциал i -го компонента в идеальном растворе равен:

где с i – концентрация i -го иона в растворе. Для реального раствора:

где a i = c i ·f i - активность i-го иона в растворе, f i – коэффициент активности. Тогда энергия взаимодействия центрального иона с ионной атмосферой в расчете на 1 моль ионов равна

Таким образом, величина коэффициента активности, зависящая от силы электростатического взаимодействия ионов, степени их сольватации и ряда других эффектов, характеризует степень отклонения свойств реальных растворов электролитов от законов идеальных растворов.

1.3. Активность и коэффициент активности электролитов.

СРЕДНЯЯ ИОННАЯ АКТИВНОСТЬ И СРЕДНИЙ ИОННЫЙ КОЭФФИЦИЕНТ

АКТИВНОСТИ. ИОННАЯ СИЛА. ПРАВИЛО ИОННОЙ СИЛЫ.

Различают активность электролита и активность ионов . Для любого электролита процесс диссоциации можно записать следующим образом:

где  + и  – - количество ионов А с зарядом z + и ионов B c зарядом z –, на которые распадается исходная частица. Например, при диссоциации хлорида бария:

.

Связь активности электролита с активностями ионов выражается следующим соотношением:

, (1.11)

где а - активность электролита, а + и а – - активности положительных и отрицательных ионов. Например, для бинарных электролитов справедливо:

.

Экспериментальных методов определения активности отдельных ионов (а + и а –) не существует. Поэтому было введено понятие средней ионной активности (), представляющей собой среднее геометрическое из активности отдельных ионов:

, (1.12)

где
.

Криоскопический метод и метод, основанный на определении давления пара, позволяют определить активность электролита в целом (а ) и по уравнению (7.13) найти среднюю ионную активность.

Средний ионный коэффициент активности () определяется выражением

. (1.14)

Значения в основном определяют криоскопическим методом и методом Э.Д.С.

Средняя ионная моляльность (
) определяется как

. (1.15)

Если концентрацию раствора выражать через моляльность, то

Пример 1.1. Найти связь между активностью электролита, его моляльной концентрацией и средним ионным коэффициентом активности для р-ров NaCl и Na 2 CO 3 моляльности m .

а) Концентрации ионов, образующихся при полной диссоциации NaCl , равны m :

.

Так как  + =  – = 1, то

.

Для равновалентных электролитов средняя моляльность будет равна общей моляльности электролита:

,

б) Концентрации ионов, образующихся при полной диссоциации Na 2 CO 3 , равны

.

Так как  + = 2,  – = 1, то

.

С

редний ионный коэффициент активности зависит от концентрации раствора (рис. 1). В области предельно разбавленных растворов электролитов эта зависимость имеет линейный характер в координатах
.

Рис. 1. Зависимость среднего ионного Рис. 2. Зависимость среднего коэффициента

коэффициента активности активности ионов от ионной силы раствора.

от концентрации электролита. Кривая 1 описывает экспериментальную

зависимость, кривая 2 описывает зависимость

по предельному закону Дебая-Гюккеля.

Присутствие в растворе других солей изменяет коэффициент активности данной соли и тем сильнее, чем больше заряд добавляемых ионов. Суммарную концентрацию всех ионов в растворе выражают через ионную силу раствора , определяемую как полусумму произведений моляльностей всех ионов на квадрат их зарядов:

, (1.16)

где m i – концентрация i -ого иона; z i – заряд i -ого иона.

Зависимость среднего коэффициента активности ионов от ионной силы раствора имеет сложный характер и представлена на рис. 2.

Пример 1.2. Определить ионную силу раствора, содержащего на 1000 г воды 0,01 моль
и 0,1 моль
.

Решение. Ионная сила такого раствора равна

Пример 1.3. Определить ионную силу раствора
с моляльностьюm = 0,5.

Решение. По уравнению (7.16) получаем

Для растворов сильных электролитов выполняется правило ионной силы : в растворах с одинаковой ионной силой средние коэффициенты активности ионов равны. Теория сильных электролитов приводит к следующему соотношению, связывающему средние коэффициенты активности ионов с ионной силой раствора в области сильно разбавленных электролитов:

, (1.17)

где A = f (D , T ) – константа, зависящая от диэлектрической проницаемости растворителя (D ) и температуры (T ).

Уравнение (1.17) применимо лишь при очень больших разведениях (I ≤ 0,01, рис. 2), почему и получило название предельного закона Дебая-Гюккеля. В слабо минерализованных водах для расчета при 25 o С используется следующее уравнение:

. (1.18)

Для водных растворов бинарных электролитов при 25 o С справедливо:

. (1.19)

Известно, что в сильно разбавленных растворах электролитов коэффициенты активности ионов учитывают в основном поправки к их концентрациям (моляльностям), обусловленные электростатическим (ион–ионным) взаимодействием. В то же время по закону Кулона эти взаимодействия зависят также от величины зарядов и радиусов ионов. Поэтому естественно принять, как это было сделано впервые Д. Мак-Иннесом, что коэффициенты активности ионов с одинаковыми зарядами и радиусами в растворах с одинаковой ионной силой будут одинаковыми . Это предположение было названо правилом Мак–Иннеса.

Мак–Иннес предложил взять в качестве стандартов ионы калия и хлора как имеющие одинаковые заряды и радиусы гидротированных ионов. Определив значения
и
, можно затем на основе закона ионной силы вычислить коэффициенты активности всех других ионов.

ТЕМА 2

Удельная и эквивалентная электропроводность, их зависимость от концентрации для сильных и слабых электролитов. Подвижность ионов. Закон независимости движения ионов Кольрауша, предельная ионная электропроводность. Аномальная подвижность ионов гидроксила и гидроксония. Экспериментальные приложения метода электропроводности.

2.1. УДЕЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ РАСТВОРОВ ЭЛЕКТРОЛИТОВ.

При наложении электрического поля на раствор электролита сольватированные ионы, находящиеся до этого в беспорядочном тепловом движении, начинают упорядоченное движение (миграцию) к противоположно заряженным электродам. С возрастанием скорости движения ионов возрастает сопротивление среды и через некоторое время скорость движения ионов становится постоянной.

Скорость движения ионов i -го вида определяется градиентом потенциала (напряженности) электрического поля E (В/см) и сопротивлением среды, зависящим от температуры, природы иона и растворителя:

, (2.1)

где U (В) – разность потенциалов между электродами, l (см) – расстояние между ними, u i (см 2 ·В -1 ·с -1) – абсолютная скорость движения ионов в данных условиях (т. е. скорость движения ионов при Е = 1 В/см).

Мерой способности вещества проводить электрический ток при наложении внешенего электрического поля является электрическая проводимость (электропроводность) L . На практике эта способность часто характеризуется обратной величиной - сопротивлением проводника. Так, общее сопротивление проводника R (Ом) длиной l (см) и поперечным сечением S (см 2) равно

, (2.2)

где ρ – коэффициент пропорциональности, называемый удельным сопротивлением . Из (8.2) следует, что удельное сопротивление - это сопротивление проводника длиной 1 см и сечением 1 см 2 , размерность его равна:

. (2.2)

Удельная электропроводность электролита æ - величина, обратная удельному сопротивлению:

æ
[Ом -1 ·см -1 ]. (2.3)

Она характиризует электропроводность слоя электролита толщиной в 1 см с площадью поперечного сечения в 1 см 2 . Тогда

æ. (2.4)

Удельная электропроводность раствора электролита определяется количеством ионов, переносящих электричество, и скоростью их миграции .

Пусть между электродами, находящимися на расстоянии l (см) и к которым приложена разность потенциалов U (В), находится раствор электролита (рис. 3). Для ионов i -го вида: концентрация C i (моль-экв/см 3) и скорость миграции υ i (см/с).

Рис. 3. Схема переноса зарядов через раствор электролита.

Ч
ерез поперечное сечениеS раствора (рис. 3) за 1 с мигрирует (C i υ i S ) моль-эквивалентов ионов i -го вида, которые перенесут (
) количество электричества, где F – число Фарадея (96485 Кл/моль-экв). Количество электричества (Кл), перенесенное всеми ионами за 1 с (т. е. сила тока I в А) равно:

(2.5)

Или, с учетом (8.1),

. (2.6)

По закону Ома

S ), (2.7)

æ. (2.8)

Тогда, из уравнений (8.6) и (8.8), для удельной электропроводности получаем

æ
. (2.9),

т. е. удельная электропроводность электролита пропорциональна концентрациям ионов и их абсолютным скоростям движения. Для раствора бинарного электролита концентрации С (моль-экв/см 3) со степенью диссоциации α имеем

æ
, (2.10)

где u + и u ‑ ‑ абсолютные скорости движения катионов и анионов.

При повышении температуры электролита возрастают скорости движения ионов и удельная электропроводность:

æ 2 = æ 1
, (2.11)

где B – температурный коэффициент (для сильных кислот 0,016; для сильных оснований 0,019; для солей 0,022).

2.2. ЭКВИВАЛЕНТНАЯ ЭЛЕКТРОПРОВОДНОСТЬ.

Удельная электропроводность растворов зависит от природы электролита, природы растворителя, температуры, концентрации ионов в растворе и т. д. Хотя для понимания свойств электролитов удельная электропроводность представляет собой малоудобную величину, зато ее можно измерить непосредственно и затем пересчитать в эквивалентную электропроводность λ. Эквивалентная электропроводность представляет собой электропроводность такого объёма раствора V (см 3 ), который содержит 1 моль-экв растворенного вещества и заключён между двумя параллельными электродами соответствующей площади, находящихся на расстоянии в 1 см друг от друга :

æ V = æ / C , (2.12)

где С – концентрация раствора (моль-экв/см 3).

Эквивалентную электропроводность (Ом -1 ·см 2 ·(моль-экв) -1) легко рассчитать, если известны удельная электропроводность и концентрация раствора.

Для описания температурной зависимости эквивалентной электропроводности используется следующее уравнение:

, (2.13)

где  и  - эмпирические коэффициенты. Увеличение электропроводности с ростом температуры связано в основном с уменьшением вязкости раствора электролита. Обычно при повышении температуры на 1 К электропроводность увеличивается на 1,5 – 2%.

Эквивалентная электропроводность растворов электролитов с разбавлением возрастает и в области предельных разбавлений достигает предельного значения λ ∞ , называемой электропроводностью при бесконечном разбавлении или предельной электропроводностью . Эта величина соответствует электропроводности гипотетически бесконечно разбавленного раствора, характеризующегося полной диссоциацией электролита и отсутствием сил электростатического взаимодействия между ионами.

Из уравнений (2.10) и (2.11) следует, что

Произведение числа Фарадея на абсолютную скорость движения иона называют подвижностью иона:

. (2.15)

где λ + и λ ‑ ‑ подвижности катиона и аниона соответственно. Подвижности ионов измеряются в тех же единицах, что и эквивалентная электропроводность (см 2 ·Oм -1 ·моль-экв -1), поэтому их иногда называют ионными электропроводностями или электрическими проводимостями ионов .

При бесконечном разведении (α = 1) получаем

, (8.17)

где
и
‑ предельные подвижности ионов.

Величина предельной электропроводности бесконечно разбавленного раствора электролита представляет собой сумму двух независимых слагаемых, каждая из которых соответствует определенному виду ионов. Это соотношение установлено Кольраушем и называется законом независимого движения ионов (законом Кольрауша ): эквивалентная электропроводность при бесконечном разведении равна сумме предельных подвижностей ионов. Сущность этого закона состоит в следующем: в предельно разбавленном растворе электролита катионы и анионы переносят ток независимо друг от друга.

Закон Кольрауша помог вычислить значения λ ∞ для многих слабых электролитов, для которых нельзя было определить эти значения из опытных данных экстрополяцией их к нулевой концентрации (или к бесконечному разведению) как это делается в случае сильных (и средних) электролитов. Предельные подвижности ионов, как и эквивалентная электропроводность, увеличиваются с температурой. Их значения, например, при 25 о С лежат в интервале от 30 до 80 и от 40 до 80 (см 2 ·Oм ‑1 ·моль-экв -1) для однозарядных катионов и анионов соответственно.

У ионов ОН ‑ и Н + наблюдается аномально высокие подвижности:

198 и
350 (см 2 Ом -1 моль-экв -1) при 25 о С,

что объясняется особым - эстафетным - механизмом их перемещения (рис. 4).

Р
ис. 4. Эстафетный механизм перемещения ионовОН - и Н + .

На основании эквивалентной электропроводности раствора электролита и предельных подвижностей ионов можно рассчитать степень диссоциации слабого электролита:

, (2.18).

Для сильных электролитов, диссоциирующих полностью, рассчитывают коэффициент электропроводности:

, (2.19)

который учитывает влияние электростатического взаимодействия ионов на скорость их движения.

С учётом нового понятия ‑ подвижность иона ‑ для удельной электропроводности можно записать:

æ
, (2.20)

Отметим, что в современной научной и учебной литературе используется также понятие молярной электропроводности λ m , которую легко связать с величиной λ, зная количество моль-эквивалентов (Z ) в 1 моле вещества:

. (2.22)

2.2. ЗАВИСИМОСТЬ УДЕЛЬНОЙ И ЭКВИВАЛЕНТНОЙ ЭЛЕКТРОПРОВОДНОСТЕЙ ОТ КОНЦЕНТРАЦИИ

ДЛЯ СЛАБЫХ И СИЛЬНЫХ ЭЛЕКТРОЛИТОВ.

Э
квивалентная электропроводность
слабых и сильных электролитов увеличивается с разбавлением (рис. 5б ). Для слабых электролитов это обусловлено в основном тем, что с увеличением разведения степень диссоциации электролита возрастает и в пределе стремится к 1. Рост эквивалентной электропроводности сильных электролитов связан в основном с изменением подвижностей ионов. Подвижность ионов тем меньше, чем больше концентрация раствора. В области сильно разбавленных растворов подвижности ионов достигают своего предельного значения.

Рис. 5. Зависимость удельной (а ) и эквивалентной (б )

электропроводности от концентрации раствора электролита.

Удельная электропроводность для сильных электролитов тем выше, чем больше концентрация ионов и чем больше их абсолютные скорости (подвижности). Наибольшей удельной электропроводностью обладают кислоты, затем основания, далее идут соли, очень мала электропроводность растворов таких слабых электролитов, как уксусная кислота или аммиак.

Кривые зависимостей удельной электропроводности от концентрации имеют максимумы (рис. 5а ). В разбавленных растворах слабых и сильных электролитов рост удельной электропроводности с концентрацией обусловлен увеличением числа ионов, переносящих электричество. Дальнейшее увеличение концентрации сопровождается увеличением вязкости раствора, что снижает скорость движения ионов и электропроводность. Более того, у слабых электролитов в концентрированных растворах заметно снижается степень диссоциации и, следовательно, общее число ионов. Для слабых электролитов скорость движения ионов почти не зависит от концентрации и в общем случае их удельная электропроводность изменяется с концентрацией незначительно.

Для сильных электролитов в области разбавленных растворов межионные взаимодействия практически отсутствуют, но число ионов невелико - удельная электропроводность мала. С увеличением концентрации увеличивается число ионов в единице объёма, что приводит к росту удельной электропроводности. Однако в дальнейшем усиливающееся взаимодействие между ионами приводит к снижению подвижности ионов и рост электропроводности замедляется. Наконец, взаимодействие между ионами с ростом концентрации начинает увеличиваться настолько сильно, что приводит к уменьшению удельной электропроводности.

С позиций теории Дебая-Гюккеля уменьшение подвижности ионов с ростом концентрации обусловлено эффектами торможения движения ионов за счёт электростатического взаимодействия между ионом и ионной атмосферой.

Эффект электрофоретического торможения обусловлен торможением движения центрального иона встречным движением ионной атмосферы и имеет гидродинамическую природу. Поскольку ионы гидратированы, то движение центрального иона происходит не в неподвижной среде, а в среде, перемещающейся ему навстречу. Движущийся ион находится под влиянием дополнительной тормозящей силы (силы электрофоретического торможения), что приводит к снижению скорости его движения.

Эффект релаксационного торможения . Ионная атмосфера обладает сферической симметрией до тех пор, пока отсутствует внешнее электрическое поле. Как только центральный ион начинает движение под действием электрического поля, симметрия ионной атмосферы нарушается. Перемещение иона сопровождается разрушением ионной атмосферы в обном положении иона и формированием ее в ругом, новом. Этот процесс происходит с конечной скоростью в течение некоторого времени, называемого временем релаксации . В результате ионная атмосфера теряет центральную симметрию и позади движущегося иона всегда будет находиться некоторый избыток заряда противоположного знака, что и вызывает уменьшение его скорости движения.

Плотность ионной атмосферы увеличивается с ростом концентрации электролита, что приводит к усилению эффектов торможения. Теория электрофоретического и релаксационного эффектов была разработана Л. Онзагером. Она количественно позволяет учесть влияние этих эффектов на величину эквивалентной электропроводности раствора электролита:

где постоянные (В 1 ·λ ∞) и В 2 характеризуют влияние релаксационного и электрофоретического эффектов соответственно. В растворах с С → 0 эти эффекты практически не проявляются и
.

2.4. ЭКСПЕРИМЕНТАЛЬНЫЕ ПРИЛОЖЕНИЯ МЕТОДА ЭЛЕКТРОПРОВОДНОСТИ.

2.4.1. Определение константы диссоциации и степени диссоциации

слабых электролитов.

Степень диссоциации  слабого электролита может быть найдена из соотношения (8.18):

.

Константа диссоциации К Д слабого электролита связана со степенью диссоциации  уравнением

. (2.24)

С учетом (8.18), получаем

. (2.25)

Величина λ ∞ рассчитывается по закону Кольрауша (уравнение 2.17).

2.4.2. Определение произведения растворимости

малорастворимых соединений.

Растворимостью электролита (S ) называется его концентрация в насыщенном растворе (моль/л), а произведением растворимости (ПР ) – произведение активностей катиона и аниона труднорастворимой соли.

Насыщенный раствор малорастворимой соли является очень разбавленным раствором (α → 1 и λ → λ ∞). Тогда

(æ·1000) / C . (2.26)

Найдя значение λ ∞ по табличным данным и измерив удельную электропроводность раствора, можно вычислить концентрацию насыщенного раствора (в моль-экв/л), которая представляет собой растворимость соли

C = (æ·1000) / λ ∞ = S (2.27).

Поскольку æ малорастворимых растворов (æ Р) часто соизмерима с электропроводностью воды (æ В), то в уравнениях удельная электропроводность раствора часто рассчитывается как разность: æ = æ Р – æ В.

Для труднорастворимых солей активности катиона и аниона практически совпадают с их концентрациями, поэтому

ПР =
(2.28),

где i – стехиометрический коэффициент иона в уравнении диссоциации; n – число видов ионов, на которые диссоциирует электролит; C i – концентрация иона, связанная с концентрацией электролита С соотношением

.

Так как  = 1, то

,

и произведение растворимости

. (2.29)

Так, для малорастворимого (бинарного) одно–одновалентного электролита, диссоцииирующего по схеме

,

(моль/л) 2 .

ТЕМА 3

Электродные процессы. Понятие об электродвижущих силах (ЭДС) и скачках потенциалов. Электрохимические цепи, гальванические элементы. Нормальный водородный электрод, стандартный электродный потенциал. Термодинамика гальванического элемента. Классификация электрохимических цепей и электродов.