Формирование функциональных систем. Общие свойства функциональных систем

В истории цивилизации практически нельзя найти такого момента, когда можно сказать, что именно в этот момент появилась идея о единстве мира. Уже тогда человек столкнулся с уникальной гармонией между целым и отдельными частями. Эта проблема является актуальной не только в биологии, но и в физике, экономике, математике и иных науках. Системный подход, который выливается в теоретическую трактовку, носит название «Общая теория функциональных систем». Он образовался в результате реакции на бурное развитие аналитических концепций в науке, которые удаляют творческую идею от того, что длительный период времени именовалось проблемой целостного организма. Что же представляют собой функциональные системы в понимании различных наук? Давайте разбираться.

Понятие в анатомии и физиологии

Человеческий организм представляет собой совокупность разных функциональных систем. В данный момент есть только одна из всех систем, которая доминирует. Цель ее деятельности заключается в возвращении к норме определенной величины. Она образуется временно и направлена на достижение результата. Функциональная система (ФС) - это комплекс тканей и органов, что относятся к разным анатомическим структурам, но объединяются для того, чтобы достичь полезного результата.

Существует два вида ФС. Первый вариант обеспечивает саморегуляцию организма за счет внутренних его ресурсов, не нарушая его границ. Примером этого может выступать поддержание постоянного кровяного давления, температуры тела и прочее. Эта система автоматически компенсирует сдвиги во внутренней среде организма.

Второй вид ФС обеспечивает саморегуляцию путем изменения поведенческих актов, взаимодействия с внешней средой. Этот вид функциональных систем является основой формирования разных типов поведения.

Структура

Структура функциональной системы достаточно проста. Каждая из таких ФС состоит из:

  • центральной части, характеризующейся комплексностью нервных центров, которые регулируют определенную функцию;
  • исполнительной части, обусловленной совокупностью органов и тканей, деятельность которых нацелена на достижение результата (сюда относят также и поведенческие реакции);
  • обратной связи, что характеризуется возникновением после деятельности второй части системы вторичного потока импульсов в ЦНС (она дает информацию об изменении величины);
  • полезного результата.

Свойства

Каждые функциональные системы организма имеют некоторые свойства:

  1. Динамичность. Каждая ФС является временной. Разные органы человека могут входить в комплекс одной ФС, тогда как одни и те же органы могут находиться в разных системах.
  2. Саморегуляция. Каждая ФС способствует поддержанию на постоянном уровне величин без внешнего вмешательства.

Все системы работают следующим образом: при изменении величины импульсы поступают в центральную их часть и формируют образец будущего результата. Дальше в деятельность включается вторая часть. Когда полученный результат будет совпадать с образцом, функциональная система распадается.

Теория Анохина П.К.

Анохиным П.К. была выдвинута теория функциональных систем, которая описывает модель поведения. Согласно ей все отдельные механизмы организма объединяются в единую систему приспособительного акта поведения. Акт поведения, каким бы сложным он ни был, начинается с афферентного синтеза. Возбуждение, которое было вызвано внешним раздражителем, вступает в связь с другими возбуждениями, которые являются иными по функциям. Мозг синтезирует эти сигналы, которые поступают в него по сенсорным каналам. В результате этого синтеза он создает условия для осуществления целеустремленного поведения.Синтез включает в себя такие факторы, как мотивацию, афферентацию пусковую, обстановочную, а также память.

Дальше переходит в стадию принятия решения, от которой зависит тип поведения. Эта стадия возможна при наличии сформированного аппарата акцептора результатов действия, который закладывает результаты событий, что произойдут в будущем. Потом происходит осуществление программы действия, где возбуждения интегрируются в единый акт поведения. Таким образом, действие является сформированным, но не реализованным. Дальше идет стадия выполнения поведенческой программы, потом происходит оценка результатов. На основании этой оценки поведение корректируется или действие прекращается. На последней стадии прекращают свою деятельность, совершается удовлетворение потребности.

Менеджмент

Постоянное развитие рыночных отношений и конкуренция предполагают, что должна использоваться новейшая функциональная система управления. Это будет способствовать увеличению результативности предприятия. ФС должны быть гибкими, иметь способность самосовершенствоваться, вести высокоэффективные формы организации деятельности, а также создавать условия для новых научных и технических открытий. Главная задача - организация работы компании на рынке в настоящее и будущее время, оценивание возможностей фирмы, а также поиск нужных возможностей в условиях конкуренции.

Положения

Функциональная информационная система управления имеет несколько положений:

  1. Чтобы достичь цели, необходимо провести анализ средств, отбор и применение сотрудников компании в соответствии с их квалификацией, обеспечение их необходимыми ресурсами.
  2. Необходимо проводить анализ внешней среды, изучать ее изменения, а также управление фирмой в зависимости от этих изменений.

Хорошо построенная ФС менеджмента предусматривает наблюдение за развитием персонала, умелое применение их ресурсов. Поэтому рекомендуется вовлекать умелых талантливых людей, удерживать их, мотивируя их деятельность. Функциональные возможности системы управления направлены на отбор сотрудников и их развитие. Это и есть приоритетная задача в развитии ФС менеджмента. Пристальное внимание здесь уделяется и стратегии управления, когда руководство компании продумывает модель функционирования фирмы длительный период времени. Делается это для обеспечения конкурентоспособности компании. Модель продумывается с учетом потенциала фирмы, где главным является улучшение жизни персонала.

Математика

Математические функциональные системы тесно связаны с биологическими системами. Некоторые авторы рассматривают системный подход как применение математических ФС для изучения явлений в биологии, их научного объяснения. После построения ФС (математической модели) и определения задания происходит изучение свойств этой системы математическими методами: дедукцией и машинным моделированием.

Этапы системного подхода

В биологии системный подход слагается из нескольких этапов:

  • абстрагирование, то есть построение системы и определение для нее задания;
  • дедукция, то есть рассмотрение свойств системы с применением методов дедукции;
  • интерпретация, то есть рассмотрение смысла свойств, что были найдены дедуктивными методами в биологическом явлении.

Точно также математические функциональные системы применяются для изучения явлений на производстве. Сначала теоретически формулируется математическая ФС, после этого ее задачи применяют к объяснению явлений, как в биологии, так и в менеджменте. На практике же системные закономерности могут разрабатываться на основе конкретного биологического материала, который должен быть основой формализации. При помощи быстрого математического осмысления закономерностей становится реальной перспектива развития знаний в биологии и физиологии. Но математическая теория систем биологических должна быть построена с привлечением целенаправленного поведения.

Специфика биологической системы заключается в том, что потребность в результате и путь его получения созревают внутри системы, в ее метаболических и гормональных процессах, после чего по нервным цепям потребность реализуется в актах поведения, которые допускают математическую формализацию. Таким образом, вопрос об использовании математических ФС в различных отраслях должен быть хорошо изучен.

Выводы

В основе каждой ФС находится потребность. Именно потребность и ее удовлетворение выступают в роли основных позиций в становлении и организации работы разных функциональных систем. Так как потребности изменчивы, все ФС тесно связаны между собой во времени. Полезный результат достигается через определенную деятельность, которая протекает на различных уровнях: биохимическом, психологическом, социальном. Именно деятельность представляется иерархией биохимической, индивидуально-психологической и психологически-социальной физиологическими системами. Таким образом, каждая ФС представляется в виде циклической замкнутой организации, которая постоянно саморегулируется и самосовершенствуется.

Основным критерием ФС является положительный результат. Какие-либо отклонения от уровня, что способствует обеспечению нормальной жизнедеятельности организма, воспринимаются рецепторами. С помощью нервной и гуморальной афферентации они включают в работу определенные нервные образования. Дальше через поведение, гормональные и вегетативные реакции возвращают результат к уровню, который необходим для нормального метаболизма. Все процессы происходят непрерывно по принципу саморегуляции.

Напоследок

Таким образом, изучение функциональных систем необходимо не только в биологии, физиологии, но и других науках. У всех них одна задача - получить необходимый позитивный результат. Знания о ФС можно успешно использовать для построения модели управления на предприятии, мотивируя сотрудников на положительный результат. Также математические навыки применяют для изучения биологических систем.

Функциональная система - динамическая совокупность органов и тканей, относящихся к различным анатомо-физиологическим структурам и объединившихся для достижения определенной приспособительной деятельности (полезного приспособительного результата).

В основе функциональной системы лежит принцип возвращения к норме той или иной величины. Каждая функциональная система возникает в том случае, если какая-либо величина отклоняется от нормы. Функциональная система - это временное образование, до достижения определенного результата.

Цель работы функциональной системы - возвращение величины к норме.

Организм человека - совокупность различных функциональных систем. Из всех функциональных систем в данный момент есть одна - доминирующая.

Каждая функциональная система состоит из 4-х звеньев:

1. центральное звено - совокупность нервных центров, регулирующих ту или иную функцию;

2. исполнительное звено - органы и ткани, которые работают для достижения результата (сюда включаются поведенческие реакции);

3. обратная связь (афферентация) - после работы второго звена возникает вторичный поток импульсов от рецепторов в центральную нервную систему, идет информация об изменении той или иной величины;

4. полезный результат - для достижения которого и работает функциональная система.

Каждая функциональная система обладает 2-мя свойствами:

1. динамичность - каждая функциональная система - это образование временное. Различные органы могут входить в состав одной функциональной системы, одни и те же органы могут входить в состав различных функциональных систем;

2. саморегуляция - функциональная система обеспечивает поддержание на постоянном уровне различных параметров без вмешательства из вне. Все функциональные системы работают по принципу опережения. При отклонении от нормы величины импульсы поступают в центральное звено, и там формируется эталон будущего результата. Затем начинает работать 2-е звено. Как только полученный результат будет соответствовать эталону, то функциональная система распадается.

Выделяют два типа функциональных систем. Функциональные системы первого типа обеспечивают само регуляцию функционирования систем организма, направленных на возможность его существования в данных условиях среды. Функциональные системы второго типа обеспечивают приспособительный эффект через изменение поведения. Именно этот тип функциональных систем лежит в основе различных поведенческих актов.

Согласно П.К. Анохину, функциональная система второго типа состоит из следующих стадий:

Афферентный синтез; стадия принятия решения; стадия акцепторов результата действия; эфферентный синтез (программа действия); само действие; оценка достигнутого результата.



Афферентный синтез представляет собой объединение всей сенсорной информации, поступающей в мозг. Его содержание определяется мотивационным возбуждением, памятью. Любая информация, поступающая информация соотносится с доминирующим в настоящее время мотивационным возбуждением. Пусковая афферентация определяет то возбуждение, которое будет формироваться в сенсорной системе под влиянием внешнего биологически значимого раздражителя. Распределение раздражителей во времени и пространстве определяет обстановочную афферентацию (при изменении последовательности действий (обстановки) условный рефлекс может не проявляться). Функциональная роль пусковых и обстановочных афферентаций обусловлена прошлым опытом человека, хранящегося в виде памяти. На основе взаимодействия мотивационного, обстановочного возбуждения и памяти формируется так называемая интеграция или готовность к определенному поведению. Чтобы она трансформировалась в определенное целенаправленное поведение требуется воздействие со стороны пусковых раздражителей (пусковая афферентация). Внешним проявлением афферентного синтеза, обусловленного влияниями лимбической системы и ретикулярной формации на кору, является активизация ориентировочно-исследовательского поведения.

Завершение этой стадии сопровождается переходом в стадию принятия решения, которая определяет тип и направленность поведения, этот этап реализуется через формирование аппарата акцепторов результата действия, программирующий результаты будущих событий.

Эфферентный синтез или стадия программа действия осуществляет интеграцию соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано как нервный процесс, но внешне оно еще не реализуется.

На основании этой программы происходит конкретное действие, результаты которого благодаря наличию обратной афферентации сопоставляются с акцептором результатов действия. В случае достижения желаемого результата действие прекращается, в противном случае в программу поведения вносятся соответствующие корректировки.

Теорию функциональных систем предложил еще в 30-х годах 20 века П. К. Анохин, т. к. рефлекторная теория не объясняла сложное поведение человека.

Под функциональной системой понимается динамическая саморегулирующаяся организация, избирательно объединяющая центральную нервную систему, периферические органы и ткани в целях достижения полезного для организма приспособительного результата (П. К. Анохин, 1975 г.). Например, система речеобразования, которая формируется в онтогенезе, а защитная - внутриутробно.

Системообразующим фактором является конечный приспособительный результат. Например, у марафонца, а это длина дистанции, требующая длительного, устойчивого функционирования ЦНС, ЖВС, КТС, СД; у гимнастов - сложно-координационные упражнения, требующие совершенной системы управления (ЦНС), а в опоре на руки - развития мышц верхних конечностей, пояса мышц верхних конечностей и туловища, вестибулярной системы.

Каждая функциональная система, вне зависимости от сложности, имеет однотипную центральную организацию:

    афферентный синтез

    принятие решения

    акцептор результата действия

    принятие решения акцептора результата действия, эффекторного синтеза и оценка достигнутого результата действия.

Афферентный синтез является первой стадией формирования любой функциональной системы и обусловлен доминирующей на данный момент мотивацией, обстановочной афферентацией (воздействием на организм внешних факторов-рев трибун, жара, холод, ветер, дождь).

Доминирующая мотивацияформируется на основе ведущей потребности, при участии мотивационных центров гипоталамуса (рекорд, первое место, приз, слава). Доминирующая мотивация активирует память, в которой заложена программа всей функциональной системы, участвующей в достижении результата.

На фоне мотивации, обстановочной афферентации и памяти действует пусковая афферентация (пусковой стимул, условный сигал - свисток, табло, флажок).

Этап афферентного синтеза обеспечивает постановку цели, достижению которой будет посвящена реализация функциональной системы.

Принятие решения является второй стадией функциональной системы. По физиологической сути - означает выбор единственной линии эффективного действия, направленного на реализацию ведущей потребности организма (например, обеспечение кислорода).

Акцептор результата действия является третьей стадией формирования функциональной системы, в которой происходит программирование основных параметров потребного результата, и на основе обратной афферентации о достигнутых параметрах реального результата осуществляется их постоянное сопоставление, сравнение и оценка. Информация о них поступает в акцептор благодаря обратной афферентации, которая позволяет исправить ошибки или довести акты (движения) до совершенных (сигналы от работающих мышц).

Акцептор результата действия - это идеальный образ (эталон) будущих результатов действия. Морфофункционально - это нервный комплекс, куда приходят возбуждения афферентной (чувствительной) и эффекторной (двигательной) природы.

Стадия эфферентного синтеза начинается одновременно со стадией акцептора результата действия. Она состоит из программы действия, эфферентного возбуждения и заканчивается действием. В этой стадии возбуждение конвергирует (т. е. сходится) на те же промежуточные нейроны сенсомоторной коры, куда поступают афферентные возбуждения, несущие информацию о параметрах реального результата (v, L, F, t).

Если результаты не соответствуют прогнозу, то возникает реакция рассогласования, активирующая ориентировочно-исследовательскую реакцию. На ее основе формируется новый, более полный афферентный синтез, принимается более адекватное решение, что приводит к формированию более совершенной программы.

Нейроны, участвующие в формировании функциональной системы, расположены во всех структурах ЦНС.

При достижении желаемого полезного результата в акцепторе результатов действия формируется реакция согласования, если поступает афферентация, сигнализирующая об удовлетворении мотивации.

Оценка достигнутого результата начинается непосредственно после совершения действия, т. к. параметры о его результатах с помощью обратной афферентации (связи) анализируются акцептором результата действия. После этого функциональная система перестает существовать.

Согласно К. В. Судакову (1978), по своей структуре каждая функциональная система представляет собой циклическую, замкнутую саморегулирующуюся организацию. Примерами могут служить функциональные системы, определяющие уровни массы крови, число форменных элементов, кровяного давления, рН крови, содержание сахара в крови и т. д. Эти функциональные системы обусловлены внутренними, генетически обусловленными механизмами саморегуляции.

Другие функциональные системы, например, система дыхания, наряду с внутренними, имеют относительно активный внешний механизм саморегуляции. Например, недостаточное количество кислорода в атмосфере города.

В третью группу выделяют системы с активным внешним звеном саморегуляции. Например, ориентировка в пространстве. Функционирование этих систем определяется психической и поведенческой деятельностью человека. Такие функциональные системы формируются во время производственной и спортивной деятельности.

С эволюционных позиций выделяют: морфофункциональные, гомеостатические, нейродинамические и психофизиологические системы.

Цель гомеостатических функциональных систем состоит в поддержании относительно постоянными важнейших характеристик организма:

    температура тела

    энергетические запасы

    концентрация рН

Важнейшим структурным элементом нейродинамических и психофизиологических функциональных систем является кора головного мозга и в первую очередь - ее отделы, связанные с формированием второй сигнальной системы.

Функциональные системы постоянно создаются на основе текущих потребностей организма. С целью достижения полезного для организма приспособительного результата различные функциональные системы производят избирательное объединение различных органов, тканей и их комбинации. Например, в функциональную гомеостатическую систему, обеспечивающую оптимальную температуру тела, включаются легкие, почки, потовые желез, ЖКТ, ССС, НС, ЖВС.

Число функциональных систем в жизнедеятельности человека очень велико, т. к. формируются они в соответствии с потребностями обеспечения конкретных целевых задач в трудовой и спортивной деятельности. Например, исходя из функциональной системы спортивной деятельности, доминирующая мотивация, обусловленная конечной целью (спортивный результат), определяет потребность спортсмена выполнять спортивное задание (прыжок, забег, подъем штанги) и формирует установку на ее выполнение.

Обстановочная и пусковая афферентация представляют собой воздействие на организм внешних конкретных условий выполнения задания (температура, влажность, ветер, солнце, атмосферное давление) и внутренних факторов (здоровье, работоспособность).

Память спортсмена позволяет сопоставить желание и возможность выполнения упражнения с учетом личного опыта. Формируется образ упражнения (у гимнастов), который включает конечную цель, систему двигательных программ, знание механических свойств снарядов.

Одновременно с образом формируется программа действий, происходит мобилизация и активация функций и систем организма, которым предстоит обеспечить жизнедеятельность и эфферентное возбуждение.

В процессе выполнения упражнения (например, бега) идет постоянное сопоставление ожидаемого результата и текущей деятельности (скорость бега). Если они не совпадают, то через аппарат эмоций происходит экстренная мобилизация физиологических резервов. Функциональная система реорганизуется и приводит в соответствие с текущей ситуацией путем избыточной активации физиологических функций.

Таким образом, под функциональной системой понимается такая форма организации внутренней деятельности организма, которая обеспечивает достижение стоящей перед субъектом цели и корректирует при этом свою структуру и свои функции в соответствии с данными текущего контроля за промежуточными результатами.

Функциональные состояния. Под функциональным состоянием (организма) понимается совокупность различных характеристик физиологических и психофизиологических процессов, определяющих уровень активности функциональных систем организма, определяющих жизнедеятельность, работоспособность и поведение человека.

Все элементарные процессы организма можно объединить в физиологические, психологические и поведенческие. На физиологическом уровне выделяют: двигательный и вегетативный компоненты. На психологическом-характеристики основных психических процессов. На поведенческом-количественные и качественные характеристики деятельности (м, с, км, образы и т. д.).

Функциональное состояние представляет собой динамическую картину изменений отдельных функций и систем. В то же время функциональная система обладает достаточно высокой степенью устойчивости, допуская в определенных пределах колебание параметров отдельных функций. В спорте это -спортивная форма, переходное состояние и утомление.

Применительно к физиологии труда и спорта понятие «функциональное состояние» необходимо для определения возможности человека выполнить конкретный вид профессиональной или спортивной деятельности.

Классификация функциональных состояний строится по надежности, цели деятельности, степени напряженности регуляторных механизмов гомеостаза, адекватности ответной реакции.

Глубинные физиологические процессы, обеспечивающие такой сложный механизм организации поведения с помощью рассудочного мышления, во многом еще не выяснены. На сегодня общая схема формирования такого механизма наиболее точно сформулировал П.К. Анохин в своей гипотезе о функциональную систему.

Большинство сравнительно сложных форм целенаправленного поведения основываются на предыдущем видении цели, задачи и ожидаемого результата действия. В ЦНС можно выделить несколько стадий (этапов) формирования соответствующих механизмов обеспечения такой формы деятельности.

Аферентний синтез.

Первый этап заключается в "аферентному синтезе", что предшествует принятию решения. Он основывается на анализе и синтезе аферентної информации четырех компонентов: биологической мотивации (пищевые, половые, оборонительные и т. п), обстановкової афферентации (окружающая среда), пусковой афферентации (непосредственный стимул) и памяти.

Основным побудительным мотивом формирования аферентного синтеза являются биологически важные мотивации. Они формируют доминантное очаг возбуждения, к которому обращаются остальные компоненты и, в частности, память, что включает как генетически врожденный, так и приобретенный опыт по удовлетворению указанной потребности. Кроме того, в формировании первой стадии поведенческого акта большое значение имеет анализ всей сенсорной импульсации, поступающей. ее можно расчленить на две части: обстановкову (фоновую) и пусковую афферентации. Последний компонент-тот конкретный механизм, который запускает эту и последующие фазы формирования всей системы поведенческого акта.

Ведущую роль как структурное основание осуществления указанных процессов играют лобная и теменная ассоциативные зоны коры (об этом подробнее изложено в предыдущем разделе), в которых выражено процессы конвергенции нервных импульсов от различных образований ЦНС, которые обеспечивают аферентний синтез. Эти процессы дополнительно усиливаются конвергенцией активувальних влияний подкорковых структур и особенно ретикулярной формации аміноспецифічних систем мозга.

Формирование программы действия.

в Результате взаимодействия указанных факторов аферентний синтез формирует программу действия, состоящий из набора рефлекторных команд исполнительных органов (мышц, желез). Например, для двигательных рефлексов исполнительные команды выходят из пирамидных нейронов коры. В таком случае большое значение имеет вигальмовування побочных вариантов поведения, которые могли бы помешать выполнению адекватной реакции.

Акцептор результата действия.

самым Существенным (и спорным) в этой гипотезе считают предположение, что одновременно с указанными выше механизмами формируется так называемый акцептор результата действия, то есть нейронная модель предполагаемого эффекта действия. В обеспечении функционального назначения этого механизма участвуют кольцевые взаимодействия нейронов, которые при выполнении двигательных рефлексов получают импульсную активность от коллатералей пирамидного канала, передает команды к исполнительным органам.

Значение обратных связей в организации функциональных систем.

Выполнение команд (рефлексов) предопределяет результат, параметры которого оцениваются рецепторами. Информация об этом оценивание каналами "обратной связи" поступает в акцептора результата действия. И если эффект совпадает с предыдущей моделью результата, рефлекторные реакции прекращаются, то цель достигнута. Если такого совпадения нет, в программу действия вносятся коррективы, и ефекторне возбуждение способствует удлинению действия. Так происходит до тех пор, пока не будет достигнуто совпадения результата с его предсказуемой моделью. Указанные процессы реализуются ассоциативными зонами коры полушарий большого мозга, где с помощью нейронных ловушек происходит реверберация импульсных потоков, что обеспечивает кратковременное хранение следов интегративной программы.

После выполнения соответствующего поведенческого акта весь этот сложный цепь взаимодействующих нейронов розпалається. Поэтому к названию этого механизма входит слово "функциональный", то есть такой, что создается на время выполнения какой-либо функции. Если достичь полезного результата не удается, это может вызвать проявление негативных эмоций.

Принципиально по такой же схеме в ЦНС могут формироваться не только сложные программы для целенаправленного поведения субъекта, но и для регуляции относительно простых функций организма. Как наглядный пример функции такого рода можно привести механизмы терморегуляции, которые обеспечиваются заданістю параметров температуры в центре терморегуляции - гипоталамусе. То есть место формирования в ЦНС акцептора результата действия определяется самой функцией. Как отмечалось выше, при выполнении сложных движений такой акцептор образуется в корковом отделе двигательного анализатора.