로그 불평등 이론. 로그부등식에 관한 모든 것

귀하의 개인 정보를 유지하는 것은 우리에게 중요합니다. 이러한 이유로 당사는 귀하의 정보를 사용하고 저장하는 방법을 설명하는 개인정보 보호정책을 개발했습니다. 당사의 개인 정보 보호 관행을 검토하고 질문이 있는 경우 알려주시기 바랍니다.

개인정보의 수집 및 이용

개인정보란 특정 개인을 식별하거나 연락하는 데 사용할 수 있는 데이터를 말합니다.

귀하가 당사에 연락할 때 언제든지 귀하의 개인정보를 제공하라는 요청을 받을 수 있습니다.

다음은 당사가 수집할 수 있는 개인 정보 유형과 해당 정보를 사용하는 방법에 대한 몇 가지 예입니다.

당사가 수집하는 개인정보는 무엇입니까?

  • 귀하가 사이트에 신청서를 제출하면 당사는 귀하의 이름, 전화번호, 이메일 주소 등을 포함한 다양한 정보를 수집할 수 있습니다.

당사가 귀하의 개인정보를 사용하는 방법:

  • 당사가 수집한 개인 정보를 통해 당사는 고유한 제안, 판촉 행사, 기타 이벤트 및 예정된 이벤트에 대해 귀하에게 연락할 수 있습니다.
  • 때때로 당사는 중요한 통지 및 커뮤니케이션을 전송하기 위해 귀하의 개인정보를 사용할 수 있습니다.
  • 또한 당사는 제공하는 서비스를 개선하고 귀하에게 당사 서비스에 대한 권장 사항을 제공하기 위해 감사, 데이터 분석 및 다양한 연구 수행과 같은 내부 목적으로 개인 정보를 사용할 수 있습니다.
  • 귀하가 경품 추첨, 콘테스트 또는 유사한 프로모션에 참여하는 경우 당사는 귀하가 제공한 정보를 해당 프로그램을 관리하는 데 사용할 수 있습니다.

제3자에게 정보 공개

우리는 귀하로부터 받은 정보를 제3자에게 공개하지 않습니다.

예외:

  • 필요한 경우 - 법률, 사법 절차, 법적 절차 및/또는 공개 요청 또는 러시아 연방 정부 기관의 요청에 따라 - 귀하의 개인 정보를 공개합니다. 또한 당사는 보안, 법 집행 또는 기타 공공 중요성 목적을 위해 공개가 필요하거나 적절하다고 판단하는 경우 귀하에 관한 정보를 공개할 수 있습니다.
  • 개편, 합병 또는 매각이 발생하는 경우 당사는 당사가 수집한 개인정보를 해당 승계 제3자에게 이전할 수 있습니다.

개인정보 보호

당사는 귀하의 개인정보를 분실, 도난, 오용은 물론 무단 접근, 공개, 변경, 파기로부터 보호하기 위해 행정적, 기술적, 물리적 예방 조치를 취합니다.

회사 차원에서 귀하의 개인정보를 존중합니다.

귀하의 개인정보를 안전하게 보호하기 위해 당사는 직원들에게 개인정보 보호 및 보안 기준을 전달하고 개인정보 보호 관행을 엄격하게 시행합니다.

로그 부등식

이전 수업에서 우리는 로그 방정식에 대해 배웠고 이제는 그것이 무엇인지, 어떻게 해결하는지 알고 있습니다. 오늘의 수업은 로그 부등식에 대한 연구에 전념할 것입니다. 이러한 불평등은 무엇이며 로그 방정식을 푸는 것과 불평등을 푸는 것의 차이점은 무엇입니까?

로그 부등식은 로그 기호 아래 또는 밑수에 변수가 나타나는 부등식입니다.

또는 로그 부등식은 로그 방정식에서와 같이 알 수 없는 값이 로그 기호 아래에 나타나는 부등식이라고 말할 수도 있습니다.

가장 간단한 로그 부등식의 형식은 다음과 같습니다.

여기서 f(x)와 g(x)는 x에 의존하는 일부 표현식입니다.

다음 예제를 사용하여 이를 살펴보겠습니다: f(x)=1+2x+x2, g(x)=3x−1.

로그 부등식 풀기

로그 부등식을 풀기 전에, 풀면 지수 부등식과 유사하다는 점에 주목할 필요가 있습니다. 즉:

첫째, 로그에서 로그 기호 아래의 표현식으로 이동할 때 로그의 밑수를 1과 비교해야 합니다.

둘째, 변수의 변화를 이용하여 로그 부등식을 풀 때 가장 단순한 부등식을 얻을 때까지 변화에 대한 부등식을 풀어야 한다.

그러나 당신과 나는 로그 부등식을 해결하는 비슷한 측면을 고려했습니다. 이제 다소 중요한 차이점에 주목해 보겠습니다. 여러분과 나는 로그 함수의 정의 영역이 제한적이라는 것을 알고 있으므로 로그에서 로그 기호 아래의 표현식으로 이동할 때 허용되는 값의 범위(ADV)를 고려해야 합니다.

즉, 로그 방정식을 풀 때 여러분과 내가 먼저 방정식의 근을 찾은 다음 이 해를 확인할 수 있다는 점을 고려해야 합니다. 그러나 로그 부등식을 푸는 것은 로그에서 로그 기호 아래의 표현식으로 이동하므로 부등식의 ODZ를 적어야 하기 때문에 이 방법으로는 작동하지 않습니다.

또한, 불평등 이론은 양수와 음수인 실수와 숫자 0으로 구성된다는 점을 기억할 가치가 있습니다.

예를 들어 숫자 "a"가 양수인 경우 a >0이라는 표기법을 사용해야 합니다. 이 경우 이 숫자의 합과 곱도 모두 양수입니다.

부등식을 해결하는 주요 원리는 이를 더 단순한 부등식으로 대체하는 것이지만, 가장 중요한 것은 주어진 부등식과 동등하다는 것입니다. 또한, 우리는 부등식을 얻었고 이를 더 간단한 형태 등으로 다시 대체했습니다.

변수를 사용하여 부등식을 풀 때는 해당 변수의 모든 해를 찾아야 합니다. 두 부등식의 변수 x가 동일한 경우 해가 일치한다면 그러한 부등식은 동일합니다.

로그 부등식을 해결하는 작업을 수행할 때 a > 1이면 로그 함수가 증가하고 0이면 증가한다는 점을 기억해야 합니다.< a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

로그 부등식을 해결하는 방법

이제 로그 부등식을 풀 때 발생하는 몇 가지 방법을 살펴보겠습니다. 더 나은 이해와 동화를 위해 구체적인 예를 사용하여 이해하려고 노력할 것입니다.

우리 모두는 가장 간단한 로그 부등식의 형태가 다음과 같다는 것을 알고 있습니다.

이 불평등에서 V –는 다음 불평등 기호 중 하나입니다.<,>, ≤ 또는 ≥.

주어진 로그의 밑이 1보다 큰 경우(a>1), 로그에서 로그 기호 아래의 표현식으로 전환하면 이 버전에서는 부등호가 유지되고 부등호는 다음과 같은 형식을 갖습니다.

이는 다음 시스템과 동일합니다.


로그의 밑이 0보다 크고 1보다 작은 경우(0

이는 다음 시스템과 동일합니다.


아래 그림에 표시된 가장 간단한 로그 부등식을 해결하는 더 많은 예를 살펴보겠습니다.



예제 해결

운동.이 불평등을 해결해 봅시다:


허용 가능한 값의 범위를 해결합니다.


이제 우변에 다음을 곱해 보겠습니다.

우리가 무엇을 생각해 낼 수 있는지 봅시다:



이제 하위 대수 표현식을 변환해 보겠습니다. 로그의 밑이 0이기 때문에< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
x > 8.

그리고 이것으로부터 우리가 얻은 간격은 전적으로 ODZ에 속하며 그러한 불평등에 대한 해결책이 됩니다.

우리가 얻은 대답은 다음과 같습니다.


로그 부등식을 해결하려면 무엇이 필요합니까?

이제 로그 부등식을 성공적으로 해결하기 위해 무엇이 필요한지 분석해 볼까요?

첫째, 모든 주의를 집중하고 이러한 불평등에 따른 변환을 수행할 때 실수하지 않도록 노력하십시오. 또한, 그러한 불평등을 해결할 때, 외부 솔루션의 손실이나 획득으로 이어질 수 있는 불평등의 확장과 축소를 피해야 한다는 점을 기억해야 합니다.

둘째, 로그 부등식을 풀 때 불평등 시스템과 불평등 집합과 같은 개념 간의 차이를 논리적으로 생각하고 이해하는 방법을 배워야 DL의 안내를 받으면서 불평등에 대한 솔루션을 쉽게 선택할 수 있습니다.

셋째, 이러한 불평등을 성공적으로 해결하려면 각자가 기본 기능의 모든 속성을 완벽하게 알고 그 의미를 명확하게 이해해야 합니다. 이러한 함수에는 대수 함수뿐만 아니라 유리수, 거듭제곱, 삼각함수 등 한마디로 학교 대수학 시간에 공부한 모든 함수가 포함됩니다.

보시다시피, 로그 불평등이라는 주제를 연구한 결과, 목표 달성에 신중하고 끈질기게 노력한다면 이러한 불평등을 해결하는 데 어려움이 없습니다. 불평등을 해결하는 데 문제가 발생하지 않도록 하려면 가능한 한 많이 연습하고 다양한 문제를 해결하는 동시에 그러한 불평등을 해결하는 기본 방법과 해당 시스템을 기억해야 합니다. 대수부등식을 풀지 못했다면, 앞으로 다시는 실수를 반복하지 않도록 주의 깊게 실수를 분석해야 합니다.

숙제

주제를 더 잘 이해하고 다루는 내용을 통합하려면 다음 불평등을 해결하세요.


그들과 함께 내부 로그가 있습니다.

예:

\(\log_3⁡x≥\log_3⁡9\)
\(\log_3⁡ ((x^2-3))< \log_3⁡{(2x)}\)
\(\log_(x+1)⁡((x^2+3x-7))>2\)
\(\lg^2⁡((x+1))+10≤11 \lg⁡((x+1))\)

로그 부등식을 해결하는 방법:

로그 부등식을 \(\log_a⁡(f(x)) ˅ \log_a(⁡g(x))\) 형식으로 줄이기 위해 노력해야 합니다(기호 \(˅\)는 다음 중 하나를 의미함). 이 유형을 사용하면 로그와 그 밑을 제거하여 로그 하의 표현의 부등식, 즉 \(f(x) ˅ g(x)\) 형식으로 전환할 수 있습니다.

그러나 이러한 전환을 수행할 때 매우 중요한 미묘함이 하나 있습니다.
\(-\)가 숫자이고 1보다 큰 경우 부등호는 전환 중에 동일하게 유지됩니다.
\(-\) 밑이 0보다 크고 1보다 작은 숫자(0과 1 사이에 있는 경우)인 경우 부등호는 반대 방향으로 변경되어야 합니다. 즉,

예:

\(\log_2⁡((8-x))<1\)
ODZ: \(8-x>0\)
\(-x>-8\)
\(엑스<8\)

해결책:
\(\로그\)\(_2\) \((8-x)<\log\)\(_2\) \({2}\)
\(8-x\)\(<\) \(2\)
\(8-2\(x>6\)
답: \((6;8)\)

\(\log\)\(_(0.5⁡)\) \((2x-4)\)≥\(\log\)\(_(0.5)\) ⁡\(((x+ 1))\)
ODZ: \(\begin(케이스)2x-4>0\\x+1 > 0\end(케이스)\)
\(\begin(케이스)2x>4\\x > -1\end(케이스)\) \(\Leftrightarrow\) \(\begin(케이스)x>2\\x > -1\end(케이스) \) \(\Leftrightarrow\) \(x\in(2;\infty)\)

해결책:
\(2x-4\)\(≤\) \(x+1\)
\(2x-x≤4+1\)
\(x≤5\)
답: \((2;5]\)

매우 중요!부등식에서 \(\log_a(⁡f(x)) ˅ \log_a⁡(g(x))\) 형식에서 로그 아래 표현식 비교로의 전환은 다음과 같은 경우에만 수행될 수 있습니다.


. 부등식 풀기: \(\log\)\(≤-1\)

해결책:

\(\통나무\) \(_(\frac(1)(3))⁡(\frac(3x-2)(2x-3))\)\(≤-1\)

ODZ를 작성해 봅시다.

ODZ: \(\frac(3x-2)(2x-3)\) \(>0\)

\(⁡\frac(3x-2-3(2x-3))(2x-3)\)\(≥\) \(0\)

괄호를 열고 .

\(⁡\frac(-3x+7)(2x-3)\) \(≥\) \(0\)

비교 부호를 반대로 바꾸는 것을 잊지 않고 부등식에 \(-1\)을 곱합니다.

\(⁡\frac(3x-7)(2x-3)\) \(≤\) \(0\)

\(⁡\frac(3(x-\frac(7)(3)))(2(x-\frac(3)(2)))\)\(≤\) \(0\)

수직선을 만들고 그 위에 점 \(\frac(7)(3)\)과 \(\frac(3)(2)\)를 표시해 봅시다. 부등식이 엄격하지 않음에도 불구하고 분모에서 점이 제거된다는 점에 유의하세요. 사실 이 점은 해결책이 될 수 없습니다. 왜냐하면 불평등으로 대체하면 0으로 나누게 되기 때문입니다.


\(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

이제 동일한 숫자 축에 ODZ를 플롯하고 이에 대한 응답으로 ODZ에 해당하는 간격을 기록합니다.


최종 답변을 적어 보겠습니다.

답변: \(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

. 부등식을 푼다: \(\log^2_3⁡x-\log_3⁡x-2>0\)

해결책:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

ODZ를 작성해 봅시다.

ODZ: \(x>0\)

해결책을 살펴보겠습니다.

해결책: \(\log^2_3⁡x-\log_3⁡x-2>0\)

여기에는 전형적인 제곱-대수 부등식이 있습니다. 해보자.

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

부등식의 좌변을 로 확장합니다.

\(D=1+8=9\)
\(t_1= \frac(1+3)(2)=2\)
\(t_2=\frac(1-3)(2)=-1\)
\((t+1)(t-2)>0\)

이제 원래 변수인 x로 돌아가야 합니다. 이를 위해 동일한 솔루션이 있는 로 이동하여 역대체를 수행해 보겠습니다.

\(\left[ \begin(gathered) t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2\\log_3⁡x<-1 \end{gathered} \right.\)

\(2=\log_3⁡9\), \(-1=\log_3⁡\frac(1)(3)\)을 변환합니다.

\(\왼쪽[ \begin(수집) \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

인수 비교로 넘어 갑시다. 로그의 밑이 \(1\)보다 크므로 부등식의 부호는 변하지 않습니다.

\(\왼쪽[ \begin(수집) x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

부등식과 ODZ에 대한 해법을 하나의 그림으로 결합해 보겠습니다.


답을 적어보자.

답변: \((0; \frac(1)(3))∪(9;무한)\)

부등식에 로그 함수가 포함되어 있으면 로그라고 합니다.

로그 부등식을 해결하는 방법은 두 가지를 제외하고는 다르지 않습니다.

첫째, 로그 부등식에서 하위 대수 함수의 부등식으로 이동할 때 다음을 수행해야 합니다. 결과적인 불평등의 표시를 따르십시오. 다음 규칙을 따릅니다.

로그 함수의 밑이 $1$보다 크면 로그 부등식에서 하위 대수 함수의 부등식으로 이동할 때 부등식의 부호가 유지되지만 $1$보다 작으면 반대 방향으로 변경됩니다. .

둘째, 부등식에 대한 해법은 간격이므로, 서브로그 함수의 부등식을 해결한 후에는 두 가지 부등식의 시스템을 만들어야 합니다. 이 시스템의 첫 번째 부등식은 서브로그 함수의 부등식입니다. 두 번째는 로그 부등식에 포함된 로그 함수 정의 영역의 간격입니다.

관행.

불평등을 해결해 봅시다:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

로그의 밑은 $2>1$이므로 부호는 변하지 않습니다. 로그의 정의를 사용하면 다음을 얻습니다.

$x+3 \geq 2^(3),$

$x\in )